When a complete solution is received, it will be published.

• 5376: Proposed by Arkady Alt, San Jose, CA

Let $a_1, a_2, ..., a_n, b_1, b_2, ..., b_n$ be positive real numbers such that $b_1 < a_1 < b_2 < a_2 < ... < a_{n-1} < b_n < a_n$. Let

$$F(x) = \frac{(x - b_1)(x - b_2)\dots(x - b_n)}{(x - a_1)(x - a_2)\dots(x - a_n)}.$$

Prove that F'(x) < 0 for any $x \in Dom(F)$.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

We note that $F(x) = \prod_{m=1}^{n} \frac{x - b_m}{x - a_m}$ is a rational function with simple poles at $x = a_m$, $1 \le m \le n$.

The residue of F(x) at $x = a_{\mu}$ equals $(a_{\mu} - b_{\mu}) \prod_{m \neq \mu} \frac{a_{\mu} - b_{m}}{a_{\mu} - a_{m}} > 0$, since $a_{\mu} > b_{\mu}$ and

$$\frac{a_{\mu}-b_m}{a_{\mu}-a_m} > 0$$
, for $m \neq \mu$.

So $f(x) = F(x) - \sum_{\mu=1}^{n} \frac{a_{\mu} - b_{\mu}}{x - a_{\mu}} \prod_{m \neq \mu} \frac{a_{\mu} - b_{m}}{a_{\mu} - a_{m}}$ is a bounded entire function which implies that f(x)

is a constant. We conclude f'(x) = 0 which implies

$$F'(x) = -\sum_{\mu=1}^{n} \frac{a_{\mu} - b_{\mu}}{(x - a_{\mu})^{2}} \prod_{m \neq \mu} \frac{a_{\mu} - b_{m}}{a_{\mu} - a_{m}} < 0 \text{ for any } x \in \text{Dom (F)}.$$

Solution 2 by Ethan Gegner (student), Taylor University, Upland, IN

For all $x \in Dom(F)$, we have

$$F'(x) = \frac{\left(\prod_{i=1}^{n} (x - a_i)\right) \left(\prod_{i=1}^{n} (x - b_i)\right)' - \left(\prod_{i=1}^{n} (x - b_i)\right) \left(\prod_{i=1}^{n} (x - a_i)\right)'}{\left(\prod_{i=1}^{n} (x - a_i)\right)^2} \tag{1}$$

Suppose $x = b_j$ for some $1 \le j \le n$. Then

$$F'(x) = \frac{\prod_{i \neq j} (x - b_i)}{\prod_{i=1}^{n} (x - a_i)} = \frac{1}{(x - a_j)} \prod_{i \neq j} \frac{x - b_i}{x - a_i} < 0$$

since $x = b_j < a_j$ and $\frac{x - b_i}{x - a_i} > 0$ for all $i \neq j$.

Now suppose $x \notin \{b_1, \ldots, b_n\}$. Then $F(x) \neq 0$, so by equation (1) we have

$$\frac{F'(x)}{F(x)} = \frac{\left(\prod_{i=1}^{n} (x - b_i)\right)'}{\prod_{i=1}^{n} (x - b_i)} - \frac{\left(\prod_{i=1}^{n} (x - a_i)\right)'}{\prod_{i=1}^{n} (x - a_i)} = \sum_{i=1}^{n} \left(\frac{1}{x - b_i} - \frac{1}{x - a_i}\right) \\
= \sum_{i=1}^{n} \frac{b_i - a_i}{(x - b_i)(x - a_i)} \tag{2}$$

If $x < b_1$ or $x > a_n$, then F(x) > 0, and $\frac{b_i - a_i}{(x - b_i)(x - a_i)} < 0$ for all $1 \le i \le n$, whence F'(x) < 0. Suppose there exists some $1 \le j \le n - 1$ such that $a_j < x < b_{j+1}$. Then for every

 $1 \le i \le n$, $x - b_i$ and $x - a_i$ have the same sign, whence $\frac{b_i - a_i}{(x - b_i)(x - a_i)} < 0$ and $F(x) = \prod_{i=1}^n \frac{x - b_i}{x - a_i} > 0$. Thus, equation (2) implies F'(x) < 0.

Finally, suppose that $b_j < x < a_j$ for some $1 \le j \le n$. Then

$$\frac{F'(x)}{F(x)} = \sum_{i=1}^{n} \left(\frac{1}{x - b_i} - \frac{1}{x - a_i} \right) = \frac{1}{x - b_1} - \frac{1}{x - a_n} + \sum_{i=1}^{n-1} \left(\frac{1}{x - b_{i+1}} - \frac{1}{x - a_i} \right) > 0$$

since every term on the right hand side is positive. Moreover, $F(x) = \frac{x - b_j}{x - a_i} \prod_{i \neq j} \frac{x - b_i}{x - a_i} < 0$, so again F'(x) < 0.

Solution 3 by the proposer

Lemma.

F(x) can be represented in form

$$F(x) = 1 + \sum_{k=1}^{n} \frac{c_k}{x - a_k},$$

 $F\left(x\right)=1+\sum_{k=1}^{n}\frac{c_{k}}{x-a_{k}},$ where $c_{k},k=1,2,...,n$ are some positive real numbers.

Let
$$F_k(x) := \frac{(x - b_1)(x - b_2) \dots (x - b_k)}{(x - a_1)(x - a_3) \dots (x - a_k)}, \ k \le n.$$

We will prove by Math Induction that for any $k \leq n$ there are positive numbers

$$c_{k}(i), i = 1, ..., k \text{ such that } F_{k}(x) = 1 + \sum_{i=1}^{k} \frac{c_{k}(i)}{x - a_{i}}.$$

Let
$$d_k := a_k - b_k > 0, k = 1, 2, ..., n$$
.

Let
$$d_k := a_k - b_k > 0, k = 1, 2, ..., n$$
.
Note that $F_1(x) = \frac{x - b_1}{x - a_1} = \frac{x - a_1 + a_1 - b_1}{x - a_1} = 1 + \frac{d_1}{x - a_1}$.

Since $\frac{x - b_{k+1}}{x - a_{k+1}} = 1 + \frac{d_{k+1}}{x - a_{k+1}}$ then in supposition $F_k(x) = 1 + \sum_{i=1}^k \frac{c_k(i)}{x - a_i}$, where $c_k(i) > 0, i = 1, ..., k < n$ we obtain

$$F_{k+1}(x) = F_k(x) \cdot \frac{x - b_{k+1}}{x - a_{k+1}} = \left(1 + \sum_{i=1}^k \frac{c_k(i)}{x - a_i}\right) \left(1 + \frac{d_{k+1}}{x - a_{k+1}}\right)$$

$$= 1 + \frac{d_{k+1}}{x - a_{k+1}} + \sum_{i=1}^k \frac{c_k(i)}{x - a_i} + \sum_{i=1}^k \frac{d_{k+1}c_k(i)}{(x - a_i)(x - a_{k+1})}$$

$$= 1 + \frac{d_{k+1}}{x - a_{k+1}} + \sum_{i=1}^k \frac{c_k(i)}{x - a_i} - \sum_{i=1}^k \frac{d_{k+1}c_k(i)}{a_{k+1} - a_i} \left(\frac{1}{x - a_i} - \frac{1}{x - a_{k+1}}\right)$$

$$= 1 + \frac{d_{k+1}}{x - a_{k+1}} \left(1 + \sum_{i=1}^k \frac{c_k(i)}{a_{k+1} - a_i}\right) + \sum_{i=1}^k \frac{c_k(i)}{x - a_i} \left(1 - \frac{d_{k+1}}{a_{k+1} - a_i}\right)$$

$$= 1 + \frac{d_{k+1}F_k(a_{k+1})}{x - a_{k+1}} + \sum_{i=1}^k \frac{c_k(i)}{x - a_i} \cdot \frac{b_{k+1} - a_i}{a_{k+1} - a_i}.$$

Since $F_k(a_{k+1}) > 0$ and $b_{k+1} - a_i = (b_{k+1} - a_k) + (a_k - a_i) > 0$ then

$$c_{k+1}(k+1) = d_{k+1}F_k(a_{k+1}) > 0, \ c_{k+1}(i) := \frac{(b_{k+1} - a_i)c_k(i)}{a_{k+1} - a_i} > 0, i = 1, 2, ..., k$$

and
$$F_{k+1}(x) = 1 + \sum_{i=1}^{k+1} \frac{c_{k+1}(i)}{x - a_i}$$
.

Therefore, since
$$F(x) = 1 + \sum_{k=1}^{n} \frac{c_k}{x - a_k}$$
 and $c_k > 0, k = 1, 2, ..., n$ then

$$F'(x) = -\sum_{k=1}^{n} \frac{c_k}{(x - a_k)^2} < 0 \text{ for any } x \in Dom(F) = \{a_1, a_2, ..., a_n\}.$$

Solution 4 by Hatef I. Arshagi, Guilford Technical Community College, Jamestown, NC

We find F'(x),

$$F'(x) = \frac{b_1 - a_1}{(x - a_1)^2} \cdot \frac{x - b_2}{x - a_2} \cdot \frac{x - b_3}{x - a_3} \cdots \frac{x - b_n}{x - a_n} + \frac{x - b_1}{x - a_1} \cdot \frac{b_2 - a_2}{(x - a_2)^2} \cdot \frac{x - b_3}{x - a_3} \cdots \frac{x - b_n}{x - a_n} + \dots + \frac{x - b_1}{x - a_1} \cdot \frac{x - b_2}{x - a_2} \cdots \frac{x - b_{j-1}}{x - a_{j-1}} \cdot \frac{b_j - a_j}{(x - a_j)^2} \cdot \frac{x - b_{j+1}}{x - a_{j+1}} \cdots \frac{x - b_n}{x - a_n} + \dots + \frac{x - b_1}{x - a_n} \cdot \frac{x - b_2}{x - a_2} \cdot \frac{x - b_3}{x - a_3} \cdots \frac{b_n - a_n}{(x - a_n)^2}.$$
 (1)

We set

$$D_{1}(x) = \frac{b_{1} - a_{1}}{(x - a_{1})^{2}} \cdot \frac{x - b_{2}}{(x - a_{2})} \cdot \frac{x - b_{3}}{(x - a_{3})} \cdots \frac{x - b_{n}}{x - a_{n}}$$

$$D_{2}(x) = \frac{x - b_{1}}{x - a_{1}} \cdot \frac{b_{2} - a_{2}}{(x - a_{2})^{2}} \cdot \frac{x - b_{3}}{(x - a_{3})} \cdots \frac{x - b_{n}}{x - a_{n}}$$

$$\vdots$$

$$D_{j}(x) = \frac{x - b_{1}}{x - a_{1}} \cdot \frac{x - b_{2}}{x - a_{2}} \cdots \frac{x - b_{j-1}}{x - a_{j-1}} \cdot \frac{b_{j} - a_{j}}{(x - a_{j})^{2}} \cdot \frac{x - b_{j+1}}{x - a_{j+1}} \cdots \frac{x - b_{n}}{x - a_{n}}$$

$$\vdots$$

$$D_{n}(x) = \frac{x - b_{1}}{x - a_{1}} \cdot \frac{x - b_{2}}{x - a_{2}} \cdot \frac{x - b_{3}}{x - a_{3}} \cdots \frac{b_{n} - a_{n}}{(x - a_{n})^{2}}. \text{ Then}$$

$$F'(x) = \sum_{l=1}^{n} D_{k}(x). \qquad (2)$$

We note that because

$$0 < b_1 < a_1 < b_2 < a_2 < \dots < a_{n-1} < b_n < a_n \tag{3}$$

we have

$$\frac{b_j - a_j}{(x - a_j)^2} < 0, \text{ for all } j \text{ with } 1 \le j \le n. \quad (4)$$

Let $x \in Dom(F)$, then we consider the following cases:

Case 1. Let $x = b_{j_0}$, for some $j_0 \in \{1, 2, \dots, n\}$, then $D_j(b_{j_0}) = 0$, for all $j \neq j_0$, and because of (3), $\frac{b_{j_0} - b_j}{b_{j_0} - a_j} > 0$, for all $j \neq j_0$ and with (4) we conclude that $F'(b_{j_0}) < 0$.

Case 2. Let $x < b_1$, then for all j with $1 \le j \le n$, and by using (3), we conclude that and that $\frac{x - b_j}{x - a_j} > 0$. (5)

And then by (4) and (5) we get equation (6) that $D_j(x < b_1) < 0$, for all j with $1 \le j \le n$, and this implies that $F'(x < b_1) < 0$.

Case 3. Let $x \in (b_{j_0}, a_{j_0})$ for some $j_0 \in \{1, 2, \dots, n\}$, we will show that F(x) is decreasing on (b_{j_0}, a_{j_0}) . We know that by (4) and (3),, each function $f_j(x) = \frac{x - b_j}{x - a_j}$ is decreasing and positive on (b_{j_0}, a_{j_0}) , when $j \neq j_0$, then for all $s, t \in (b_{j_0}, a_{j_0})$ with s < t we have

$$f_j(t) > f_j(s), \quad (7)$$

also $f_{j_0}(x) = \frac{x - b_{j_0}}{x - a_{j_0}}$ is decreasing but negative on (b_{j_0}, a_{j_0}) and

$$f_{j_0}(t) > f_{j_0}(s)$$
. (8)

Now using (7) and (8), we have $\prod_{j=1}^n f_j(t) > \prod_{j=1}^n f_j(s)$, that is F(t) > F(s), whenever $s, t \in (b_{j_0}, a_{j_0})$ with s < t, the means F(x) is decreasing on (b_{j_0}, a_{j_0}) or F(x) < 0 on (b_{j_0}, a_{j_0}) .

Case 4. Let $x \in (a_{j_0}, b_{j_{0+1}})$, for some $j_0 \in \{1, 2, \dots, n-1\}$, then $f_j(x) = \frac{x - b_j}{x - a_j} > 0$, on $(a_{j_0}, b_{j_{0+1}})$, for $j \in \{1, 2, \dots, n\}$, and by (4) and (2), we conclude that F'(x) < 0, on $(a_n, b_{j_{0+1}})$.

Case 5. Let $x \in (b_n, \infty)$, then $f_j(x) = \frac{x - b_j}{x - a_j} > 0$, on (b_n, ∞) for all $j \in \{1, 2, \dots, n\}$, and by (4) and (2), we conclude that F'(x) < 0, on (b_n, ∞) .

Combining the results of Cases 1-5, we conclude that F'(x) < 0 for any $x \in Dom(F)$.

Also solved by Ed Gray, Highland Beach, FL; Paolo Perfetti, Department of Mathematics, Tor Vergata University, Rome, Italy, and Toshihiro Shimizu, Kawasaki, Japan.

• 5377: Proposed by José Luis Díaz-Barrero, Barcelona Tech, Barcelona, Spain

Show that if A. B. C. are the measures of the angles of any triangle ABC and a h

Show that if A, B, C are the measures of the angles of any triangle ABC and a, b, c the measures of the length of its sides, then holds

$$\prod_{cyclic} \sin^{1/3}(|A-B|) \le \sum_{cyclic} \frac{a^2 + b^2}{3ab} \sin(|A-B|).$$

Solution 1 by Andrea Fanchini Cantú, Italy